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Abstract A cyclic nucleotide sequence is selfcomplementary if some circular permu-
tation transfers it to a complementary sequence and (independently) is selfreverse if the
cyclic order of nucleotides in both directions is the same. Moreover, it is codonically
invariant under frame shifting if any shift of its frame does not alter the content and
cyclic order of codons. We discuss sequences which may simultaneously have these
three properties and exhibit color symmetry. Our considerations are also adapted for
respective linear sequences.

Keywords Nucleotide sequence · Frame shift · Circular permutation ·
Complementary strands · Selfcomplementary nucleotide sequence ·
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under frame shifting · Color symmetry

1 Introduction

Instances of cyclic DNA and RNA are really encountered in nature. Along with these
biopolymers themselves, researchers study also mathematically well-defined models
of real and imagined cyclic polynucleotides. This allows to more readily determine
combinatorial properties of such molecules, which may further be adapted for linear
polynucleotides with consecutive repeats, as well. The present work is targeted at
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similar objectives and also touches in a more general context upon the color symmetry
that nucleotide sequences may exhibit.

A cyclic nucleotide sequence is selfcomplementary if some circular permutation
transfers it to a complementary sequence and (independently) is selfreverse if the
cyclic order of nucleotides in both directions is the same. Moreover, it is codonically
invariant under frame shifting if any shift of its frame does not alter the content and
cyclic order of codons. We discuss sequences which may simultaneously have these
three properties.

Let An∗ be the set of all words w of length |w| = n ≥ 1 over the standard genetic
alphabet A = A, C, G, T. For an arbitrary word u = a1a2 . . . as(a j ∈ A; j ∈ [1, s];
s is not divisible by 3), one can construct a derivative word v by concatenating t copies
of u, where t is necessarily divisible by 3:

v = uu . . . u
︸ ︷︷ ︸

t times

= (a1a2 . . . as)(a1a2 . . . as) . . . (a1a2 . . . as)
︸ ︷︷ ︸

t times

. (1)

We denote by Ls,t (Ls,t ⊆ As·t ) the set of all such linear words v (as in (1)) for any
fixed s and t such that 3 does not divide s, but necessarily divides t , and, also, denote
by Cs,t the set of respective cyclic words, where all words are defined only relative to
an arbitrary circular permutation τ p, with p considered modulo st and determining
the circular shift of characters by p (mod st) positions to the right (res. to the left).
That is, for every integer p, τ pv ≡ v in Cs,t .

Earlier, we demonstrated [1] that all words of the setsCs,t have a remarkable property
that the translation of codons of any circularly permuted version τ pv of v ∈ Cs,t (con-
serving the same circular order of codons therein) produces the same cyclic sequence
of amino acids (see Proposition 3 in [1] or Proposition 1 below). Just this property of
words from Cs,t -sets is utilized in our paper. The following example illustrates that.

As a case in point, consider the sequence ATCGATCGATCG; here, the factor
ATCG of length s = 4 is repeated three times. Translating this code without any
shift gives isoleucine, aspartic acid, arginine, and serine, consecutively, or IDRS for
short. The circular shift by 1 position results in SIDR, by 2 positions produces RSID,
and (here) at last, the circular shift by 3 positions gives DRSI. Apparently, all the four
translated codes of amino acids are the same relative to some circular permutation.

To manipulate nucleotide sequences, one may use three commuting operators:
α standing for complementation of nucleotides in a string; β for inversion of the
string, and the composition γ = αβ = βα. Operators α, β, γ are also used for con-
struction of graphs reflecting interrelations of amino acids (see Figs. 1 and 2 in [2] and
Fig. 1 below). Say, in the first graph of γ -relations in [2], two amino acids Amk and
Aml (k, l ∈ [1, 21]) are linked with an edge iff to Amk there associates at least one
codon a1a2a3 such that the codon γ (a1a2a3) is associated with Aml , and vice versa.
In particular, an edge is reduced to a selfloop, if Amk = Aml (see Fig. 2 in [2]).

We also use the notation bk := α(ak) (ak ∈ A) to determine another word
u∗ = b1b2 . . . bs , where the sequential order of complementary characters bk =
α(ak) (k ∈ [1, s]) is the same that ak’s have in u, rather than a reversed one, as in
γ (u) = α(as)α(as−1) . . . α(a1) = bsbs−1 . . . b1 (!).
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Lastly, we construct the following ‘hybrid’ word:

w = uu∗uu∗ . . . uu∗
︸ ︷︷ ︸

t times
= (a1a2 . . . asb1b2 . . . bs)(a1a2 . . . asb1b2 . . . bs) . . . (a1a2 . . . asb1b2 . . . bs)

︸ ︷︷ ︸

t times

,

(2)

which is an element of the set Ts,t ⊆ L2s,t or, in a cyclic form, is an element of
U s,t ⊆ C2s,t , where the latter inclusion also means that all words from U s,t -sets obey
Proposition 3 in [1].

Now, we turn to the main part.

2 Main part

Our first statement is due to Proposition 3 of [1]:

Proposition 1 Let f be a cyclic sequence of nucleotides. Then, f conserves a circular
order of its codons under any shift of its frame if (0) all the nucleotides are the same,
(1) f has a length s not divisible by 3 and is consecutively read t times, with t a
multiple of 3, or (2) f is composed of t repeated copies of a factor h of length s, where
t is divisible by 3, while s is not.

Here, we use the following technical lemma:

Lemma 2 Let the word w∗ denote the nucleotide sequence in the second strand
complementary to the cyclic nucleotide sequence in the first strand represented by
w ∈ U s,t ⊆ C2s,t , as in (1); that is,

w∗ = u∗uu∗u . . . u∗u
︸ ︷︷ ︸

t times
= (b1b2 . . . bsa1a2 . . . as)(b1b2 . . . bsa1a2 . . . as) . . . (b1b2 . . . bsa1a2 . . . as)

︸ ︷︷ ︸

t times

.

(3)

Then, w∗ = τ pw, where τ p is a circular shift of characters, of w, by p = k|w|/2t
positions to the right (res. left), where k is an odd integer; that is, the sequence of
nucleotides in the second strand is the same relative to some circular permutation
(See Remark 1).

Proof It is apparent from comparing the definitions of the words u and u∗ above. ��
Remark 1 Though Lemma 2 correctly describes a mutual arrangement of nucleotides
in both strands, one necessary geometric clarification is required. Namely, that pyrim-
idine bases of two strands of DNA are projected in opposite directions, so as bases
of one strand are able to meet the bases of the other and become chemically linked,
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due to formation of complementary pairs of nucleotides. Such a remark is not yet so
important for linear strands, since either strand simply can be rotated about its oblong
axis to obey a needed orientation of nucleobases. But it is crucial for cyclic polynu-
cleotides, because the flipping of a cyclic strand reverses the order of nucleotides,
which becomes in general different. In order to conserve the order of nucleotides in a
reversed cyclic strand, one should impose special restrictions on this order. See below.

Following Remark 1, we consider special conditions for our cyclic polynucleotide
sequences to be invariant under reversion of their order. Namely, using the notation
of (2) and (3), we additionally assume uπ = a1a2 . . . as and u∗

π = a∗
1a∗

2 . . . a∗
s to be

palindromes (παλινδρώμoς), where a j = as+1− j and a∗
j = a∗

s+1− j ( j ∈ [1, s]),
respectively. Also, let wπ and w∗

π be words produced by substitution of uπ for u and
u∗

π for u∗ on the second side of (2) and (3), correspondingly. We denote by Uπ
s,t the

subset of all such cyclic words: wπ ∈ Uπ
s,t ⊆ U s,t ⊆ C2s,t , where s is not divisible

by 3, while t is divisible by 3, and both equalities hold just under s = 1.
The introduced palindromic restrictions allow us to state the following common

corollary of Proposition 1 and Lemma 2:

Proposition 3 Let wπ ∈ Uπ
s,t be a cyclic nucleotide sequence as above. Then,

(i) wπ is codonically invariant under frame shifting;
(ii) wπ is selfcomplementary;

(iii) wπ is selfreverse;
(iv) wπ contains for each sort of codons a1a2a3 the same number of codons

b3b2b1 (ak ∈ A; bk = α(ak); k = 1, 2, 3) (as is also in an ideal Watson and
Crick DNA).

Proof It follows from the construction, where (i) is based on Proposition 1, (ii) on
Lemma 2, (iii) is easily deduced from the palindromicity of alternated factors uπ and
u∗

π , in wπ , while (iv) is due to a simultaneous application of (ii) and (iii) to wπ ∈ Uπ
s,t ,

which completes the proof. ��
In an ideal DNA, positions symmetric about the center of a strand are occupied

by complementary nucleotides ak and bk . In our 2-strand cyclic polynucleotide, each
copy of a j ( j ∈ [1, s]) in either strand is accompanied with bs+1− j , which is not in
general a complementary nucleotide for a j . Thus, such a model, based on the set U s,t

of words, does not necessarily describe an intact DNA really existing in nature. But it
describes linear factors of DNA having the form

w+ = bs−1bswa1a2

= bs−1bs (a1a2 . . . as . . . b1b2 . . . bs) . . . (a1a2 . . . as . . . b1b2 . . . bs)
︸ ︷︷ ︸

t times

a1a2.

(4)

Evidently, a frame shift along the entire strand by 1 or 2 positions to the right
(res. left) does not alter the circular order of a codon sequence within 2st consecutive
positions of the factor w in w+ (while the latter has the total length |w+| = 2st + 4).
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Hence, also the translation of the w+-factor will produce the same circular sequence
of amino acids associated with its factor w.

Due to (iv) in Proposition 3 above, Corollary 3.1 and Proposition 4 of [2] may
be adapted for amino-acid sequences translated from the cyclic nucleotide sequences
wπ ∈ Uπ

s,t . Two respective adaptations are:

Proposition 4 In amino-acid sequences translated from cyclic nucleotide sequences
wπ ∈ Uπ

s,t , numbers of amino-acid residues are related

#Asp + #Asn + #T yr + #His = #I le + #Met + #V al .

Proposition 5 In amino-acid sequences translated from cyclic nucleotide sequences
wπ ∈ Uπ

s,t , there are inequalities on the numbers of different amino acids:

#Met ≤ #His;
#His ≤ #Met + #V al;
#I le ≤ #T yr + #Asn + #Asp;

#T yr + #Asn + #Asp ≤ #I le + #V al;
#Gln ≤ #Leu;
#T r p ≤ #Pro;
#T er ≤ #Leu + #Ser ;
#Pro ≤ #T r p + #Arg + #Gly;
#Ser ≤ #T er + #Arg + #Gly + #Ala + #T hr ;
#Cys ≤ #Ala + #T hr ;

#Ala + #T hr ≤ #Ser + #Arg + #Gly + #Cys;
#Leu + #Phe ≤ #Gln + #Lys + #Glu + #T er ;

#Gln + #Lys + #Glu ≤ #Phe + #Leu;
#Gln + #Lys + #T er + #Glu ≤ #Leu + #Phe + #Ser ;
#T r p + #Arg + #Gly + #Cys ≤ #Pro + #Ser + #Ala + #T hr ;

#Pro + #Ser + #Cys ≤ #T r p + #T er + #Arg + #Gln + #Ala + #T hr ;

where the number #T er of “stops” is conveniently identified to the number of different
proteins.

Remark 2 We make one remark about the analogy of cyclic nucleotide sequences
wπ ∈ Uπ

s,t and strands of an ideal DNA, in the sense of common relations for the
numbers of amino-acid residues. Namely, such an analogy is due to the fact that two
antiparallel strands of an ideal DNA are identical and have the same content of codons
that has the entire DNA. However, in natural DNAs, there may be deviations from the
complementarity of codons. This may result in disagreement with the relations for the
numbers of amino-acid residues translated from the ideal DNA and, more generally,
from codonic palindromic conglomerates—see Corollary 3.1 and Proposition 4 in [2].
Whereas our combinatorial considerations for ideal objects—as are the ideal Watson
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Fig. 1 The graph of β-relations of amino acids, where indices count the number of symmetric codons

& Crick DNA and cyclic nucleotides wπ ∈ Uπ
s,t —are rigorous and do not depend

on any deviations which occur due to nonideal complementarity of strands in natural
DNAs.

Note that both Corollary 3.1 and Proposition 4 in [2] are due to the graph of
γ -relations in Fig. 1 (see p. 171 in [2]), while the graph of α-relations in Fig. 2 (see
p. 174 in [2]) remains not used. Without delving into details already described in [2],
we utilize here that second graph and arrive at:

Proposition 6 In amino-acid sequences translated from cyclic nucleotide sequences
wπ ∈ Uπ

s,t , numbers of amino-acid residues are (additionally) related

#Phe = #Lys;
#Gly = #Pro;
#V al = #Gln + #His;
#Leu = #Asp + #Asn + #Glu;

#Met + #I le + #T hr = #T yr + #T r p + #Cys + #T er ;
#Arg ≤ #Ala + #Ser .

Proof It follows from the graph of α-relations in Fig. 2 of [2] and (ii) of Proposition 3.
��

Now, we use the graph of β-relations in Fig. 1 to state:

Proposition 7 In amino-acid sequences translated from cyclic nucleotide sequences
wπ ∈ Uπ

s,t , numbers of amino-acid residues are (moreover) related

#Met ≤ #V al;
#T r p ≤ #Gly;
#Gln ≤ #Asp + #Asn;
#T er ≤ #Asp + #Asn + #Ser ;

#Asp + #Asn ≤ #Gln + #T er ;
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Proof It follows from the graph of β-relations in Fig. 1 above and (iii) of Proposition 3.
��

By virtue of Proposition 3, one may consider a simultaneous merger of all relations
stated in Propositions 4–7, which are all true for cyclic nucleotide sequences wπ ∈
Uπ

s,t ; moreover, recall that all numbers in Propositions 4–7 are nonnegative integers
whose total is equal to 2st/3.

As an illustration of that Propositions 4–7 are practically obeyed, construct a
sequence wπ . First, prepare palindromic words uπ = v1v2 and u∗

π = v∗
1v∗

2 , where
v1 (v∗

1) and v2 (v∗
2) are mirror-symmetric halves of uπ (u∗

π ).

v1 = gcatgcgacgaattcggacacataaaattaatgaacccacaaagaagcacagtatggta

v2 = atggtatgacacgaagaaacacccaagtaattaaaatacacaggcttaagcagcgtacg

v∗
1 = cgtacgctgcttaagcctgtgtattttaattacttgggtgtttcttcgtgtcataccat

v∗
2 = taccatactgtgcttctttgtgggttcattaattttatgtgtcctaattcgtcgcatgc

where ordinary characters a, c, g, t denote four nucleotides (instead of capitals A, C,
G, T).

The minimum word wπ ∈ Uπ
s,t which can be constructing using (5) is

wπ = uπ u∗
π uπ u∗

π uπ u∗
π = v1v2v

∗
1v∗

2v1v2v
∗
1v∗

2v1v2v
∗
1v∗

2 . (5)

Thus, s = 118, t = 3, and the length of wπ is |wπ | = 2st = 708. This sequence
contains 144 cytosine and 144 guanine residues intermixed with 210 adenine and 210
thymine residues, which complies with Chargaff’s second parity rule, experimentally
corroborated [3–6]. Accordingly, a single strand of an ideal Watson and Crick DNA
(or codonic palindromic conglomerate [2], in general) should contain equal numbers
of cytosine and guanine as well as adenine and thymine residues. Since all codonic
palindromic conglomerates obey (iv) of Proposition 3, Chargaff’s second parity rule
is a direct consequence of (iv) in Proposition 3. This rule holds practically true for
single strands of most natural DNAs [3–6], which means that natural DNA’s strands
may closely resemble codonic palindromic conglomerates – though not necessarily
obey (5).

Translation of wπ produces 236 amino-acid residues. With the aid of Maple, we
perform an imagined translation of wπ and obtain the following numbers of amino-acid
residues: #Ala = 13, #Cys = 12, #Asp = 3, #Glu = 6, #Phe = 12, #Gly = 8, #His =
13, #I le = 13, #Lys = 12, #Leu = 20, #Met = 7, #Asn = 11, #Pro = 8, #Gln =
5, #Arg = 16, #Ser = 15, #T hr = 18, #V al = 18, #T r p = 4, #T yr = 11, #T er = 11.
It is easy to establish that this set of numbers obeys all equalities and inequalities
in Propositions 4–7. Note that codons GAT (Asp), GAG (Glu), ATC (I le), CTA
(Leu), CTC (Leu), TAG (T er) are missing in our cyclic sequence but respective five
amino acids are represented by other codons.

Remark 3 In general, there exist nucleotide sequences having any composition of
codon types, where a combinatorial number of codon subsets is equal to 264–1020,
which excludes a full analysis of all possible instances. However, if missing codons
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are known, there may be made some simplifications in the graph representing rela-
tionships of amino acids (for operators α, β, γ ) and extensions of systems of numeric
relationships given by Propositions 4–7. Here, we use “may be”, because not always
some missing codons imply such changes. In particular, the absence of codons GAT
and TAG implies that the graph in Fig. 1 loses the link connecting aspartic acid (Asp)

and “stop-codon acid” (T er). Then, in addition to nonstrict inequalities of Proposi-
tion 7, there occurs #Asp ≤ #Gln . Such considerations may be continued and involve
also two graphs of [2]. Recall that stop codons may sometimes be translated into amino
acids; otherwise, their presence should imply termination of a growing protein chain.
However, we consider purely combinatorial, imagined sequences of nucleotides which
admit any number of stop codons at any place or, alternatively, allow not to have stop
codons at all. The general combinatorial treatment herein encompasses both natural
and imagined sequences.

We want also to refer to certain considerations on p. 174–175 in [2], in which
the results of this paper might find some retrospective application. Besides, a more
complex case may be considered, in which two circularly equivalent words wπ and
w∗

π are additionally (or alternatively) equivalent in some other sense, as is the rigorous
matter of two independent texts [7,8].

3 Discussion

In crystallography, they use the notion of color symmetry introduced by Shubnikov in
1950 (see [9] and Internet), which means, in particular, that a certain passage within
the constructional motif of a crystal can be made by either a shift in space or by
permuting some sorts of atoms. For instance, this can be done in a crystal of NaCl,
whose Na+ and Cl− sublattices are identical, with accuracy to sorts of atoms therein.
Or even a simpler, noncrystallographic, example is a chessboard, where a shift by one
line is equivalent to interchanging black and white colors of cells. We find much the
same feature with the word w (w∗) in our text, where the circular permutation by s
positions is equivalent to replacement of all nucleotides by complementary ones (and
is tantamount to consideration of the second strand).

Accordingly, the automorphism (color symmetry) group G = Aut(wπ) =
〈ρ, σ, τ s〉 of a cyclic word wπ ∈ Uπ

s,t is the group generated by three its elements
ρ, σ, τ s standing for the color-symmetry operation of complementation of nucleotides,
reversion of the cyclic order of wπ , and circular permutation thereof clockwise (coun-
terclockwise) by s positions, consecutively; ρ2 = σ 2 = (τ s)2t = e, where 2t is the
order of τ s , and e is an identity. Obviously,

G = 〈ρ〉 × 〈σ, τ s〉 = 〈σ, τ s〉 × 〈ρ〉 = (〈τ s〉 � 〈σ 〉) × 〈ρ〉, (6)

where 〈τ s〉 � 〈σ 〉 is the semidirect product of a cyclic group 〈τ s〉 = {e, τ s, τ 2s, . . . ,

τ 2s(t−1)} and group 〈σ 〉 = {e, σ }, with the former as a proper normal subgroup,
〈τ s〉 � 〈σ, τ s〉; and 〈ρ〉 = {e, ρ}; apparently, 〈σ, τ s〉 ∼= D2t , and G has |G| = 8t
elements. Since we define cyclic words wπ relative to an arbitrary circular permutation
τ p, G ⊂ T = 〈ρ, σ, τ 〉 (|T | = 8st), where T is isomorphic to the automorphism
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group Aut
�
Uπ

s,t of the set
�
Uπ

s,t of all circularly permuted versions
�
wπ of words wπ ∈

Uπ
s,t .
By cutting a cyclic word wπ ∈ Uπ

s,t at one position, one can produce a respective

linear word

�

wπ , whose (color) symmetry depends on the choice of such a position.
There are three mutually exclusive instances:

(1) the cut is inside a factor u (u∗) of wπ (see (2) or (3)) and divides it into two

unequal parts, which produces asymmetric word

�

wπ with a trivial symmetry group
H1 = {e};

(2) the cut divides a factor u (u∗) of w into equal parts, which corresponds to the

mirror-symmetry group H2 = {e, σ } of

�

wπ (without the color symmetry);
(3) the cut is made just between two adjacent factors u and u∗, which produces a

word

�

wπ with the group H3 = {e, ρ} of color symmetry (but without the mirror
symmetry).

Here, we leave the symmetry analysis of two-strand (cyclic and linear) polynucleotides
formed from single strands (2) and (3) as an exercise to the reader. But note that, in
this case, the number of symmetry elements is doubled, due to the ‘antiparallelism’
of two equal strands in such constructions. In general, one may consider all possible
symmetry groups (and semigroups) of two-strand (spiral) cyclic polynucleotides and
respective nucleotide sequences.

For imagined cyclic nucleotide sequences considered above, it is also of interest
to specially discuss a theoretical (or even practical) possibility of translation of such
a sequence or its linear analog into an amino-acid sequence using both directions
of reading the former. If this may be of a biological relevance, an organism having
such DNA’s strands would be a champion among all organisms, in the sense of its
conceptual survival in nature.

The numbers of amino-acid residues in our illustrative sequence wπ are tantamount
to the following content of amino acids: alanine 5.508 %, cystein 5.085 %, aspartic acid
1.271 %, glutamine acid 2.542 %, phenylalanine 5.085 %, glycine 3.390 %, histidine
5.508 %, isoleucine 5.508 %, lysine 5.085 %, leucine 8.475 %, methionine 2.966 %,
asparagine 4.661 %, proline 3.390 %, glutamine 2.119 %, arginine 6.780 %, serine
6.356 %, threonine 7.627 %, valine 7.627 %, tryptophan 1.695 %, tyrosine 4.661 %,
stop 4.661 %. It is interesting to check if such a content may correspond to any natural
case or be suitable for any (special) applications.

Of practical importance may be nanotechnological applications of cyclic polynu-
cleotides and proteins. Say, it is worth trying to perform construction (selfassembly)
of nanotubules and nanotori from identical cyclic polynucleotides. In this case, regu-
lar polymers (say, such as considered above) normally exhibit the lower minimum of
energy than irregular ones. So, even if our objects may deviate from natural standards
for living organisms, there still remains a certain reason to study these for perspective
nanotechnological uses.
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